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The molecule of the title compound, C19H27NO3, is essentially

planar, with all non-H atoms within 0.2 AÊ of the nine-

membered indole plane, except for the three tert-butyl C

atoms. The C5 pentyl chain is in an extended conformation,

with three torsion angles of 179.95 (13), 179.65 (13) and

ÿ178.95 (15)� (the latter two angles include the C atoms of the

C5 chain only). Three intramolecular CÐH� � �O C contacts

are present (C� � �O < 3.05 AÊ and CÐH� � �O > 115�), and an

intermolecular CÐH� � �O C contact and �±� stacking

complete the intermolecular interactions.

Comment

The key biochemical roles played by the indole ring in nature

ensure that this heterocyclic system continues to attract

scrutiny from medicinal and synthetic chemists. It is a common

motif for drug targets and, as such, the development of new

diversity-tolerant routes to this privileged biological scaffold

continues to be of signi®cant bene®t (Gribble, 1996) and forms

the basis of a wide variety of drugs, including the anti-

in¯ammatory agent Indomethacin, Reserpine (exploited as a

hypotensive agent) and Sumatriptan (used for the treatment

of migraine). Historically, interest in indoles arose from the

isolation and characterization of indole alkaloids, which, along

with their semi-synthetic derivatives, have potent central

nervous system activity. Many recent advances in indole

synthesis have focused on metal-mediated procedures, with

copper, palladium, tin, titanium and zirconium being the most

prevalent (Sundberg, 1996; Gribble, 2000).

Recently, we reported a new approach to the synthesis of

the indole scaffold, exploiting a controlled organolithium

addition to functionalized styrenes, with the CÐC bond

formation reaction as the key synthetic step. A signi®cant

bene®t of this strategy is that it can provide a direct route for

the introduction of further structural diversity onto the ring

system (Coleman & O'Shea, 2003), which may be of bene®t

for combinatorial library generations. Despite the prevalence

of indole structures in the Cambridge Structural Database

(CSD; Allen, 2002), there are no structures that contain the

indole skeleton and atoms substituted at the 1- (C), 3- (C) and

5-positions (O) for direct comparison with the title compound,

(I). However, many derivatives that contain the tryptophan

residue are present in the CSD.

Pertinent bond lengths and angles for (I) are listed in Table 1

and the molecular structure is depicted in Fig. 1. The bond

lengths and angles are as expected for indole systems (Fig. 1).

Localization in the aromatic rings is discernible in (I), with a

C1AÐC2A bond length of 1.3481 (19) AÊ [the other NC4-ring

CÐC lengths are 1.4496 (19) and 1.4090 (18) AÊ ], and CÐN

distances of 1.4022 (16) and 1.4076 (18) AÊ ; in the C6 ring, the

C13ÐC14 and C15ÐC16 bond lengths are 1.379 (2) and

1.386 (2) AÊ , respectively. In the C5 pentyl chain, the CÐC

bond lengths for atoms C1±C5 are in the narrow range

1.509 (2)±1.5195 (19) AÊ ; the C2AÐC1ÐC2 angle opens to

114.98 (12)�, and the remaining CÐCÐC angles along the

chain are in the range 113.71 (12)±113.86 (12)�, indicating a

slight opening up by 4� from the ideal (109.5�) tetrahedral

angle. The pentyl chain is in an extended conformation, with
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Figure 1
A view of (I), with the atomic numbering scheme. Displacement ellipsoids
are drawn at the 30% probability level.
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three torsion angles of 179.95 (13) (C2AÐC1ÐC2ÐC3),

179.65 (13) (C1ÐC2ÐC3ÐC4) and ÿ178.95 (15)� (C2ÐC3Ð

C4ÐC5). Indeed, the C5 pentyl chain makes an angle of

4.41 (13)� with the NC4 ring, and the largest deviation of an

atom from the C5 plane is 0.011 (1) AÊ for atom C3. In the tert-

butoxycarbonyl group, the three CÐC bond lengths lie

between 1.511 (2) and 1.515 (2) AÊ , while the three OÐCÐC

angles are 102.60 (12), 109.89 (12) and 108.92 (13)�, the lowest

being that involving atom C8, which is not involved in an

intramolecular contact; the three tert-butyl CÐCÐC angles

are in the range 109.58 (14)±113.28 (15)�.
The ®ve- and six-membered rings are coplanar, with an

interplanar angle of 1.74 (8)�. The molecule of (I) is essentially

planar, the largest deviations of non-H atoms from the indole

plane being for the two atoms of the tert-butyl group

[1.110 (3) AÊ for atom C10 and 1.402 (3) AÊ for atom C9]; all

other atoms are within 0.2 AÊ of the nine-membered indole

plane (apart from the three tert-butyl C atoms). The MeO

group at atom C14 displays an OÐCÐC distortion, with O3Ð

C14ÐC13/C15 angles of 115.60 (13) and 123.34 (13)� (transoid

to atom C13 and the C5 chain). These distortions, especially

that of the CMeÐOÐCÐC torsion-angle orientation with

respect to the OÐCÐC angle, have been commented on

previously (Bruno et al., 2001; Gallagher et al., 2001; Wieden-

feld et al., 2003).

A review of the CSD (Version 5.24 of July 2003; Allen,

2002) was undertaken for structures containing an aromatic

MeO group (analysed for para-C6H4±O±CH3 with three-

dimensional coordinates, R < 0.10 and no disorder). In Fig. 2,

2299 structures are plotted along the x axis (1! 2299), with

both OMeÐCÐC angles plotted (between 100 and 140�, y

axis) and correlated with their corresponding CÐOÐCÐC

angles. The overall trend is that when the CÐOÐCÐC

torsion angles (series 3 in Fig. 2) are�0 or 180�, corresponding

to a nearly planar CÐOÐCÐC fragment, the methoxy group

usually exhibits a 5±10� difference between the two OÐCÐC

angles (series 1 and 2 in Fig. 2); when the disposition of the

CÐOÐCÐC torsion angle tends towards 90� [mid-table on

the x axis (abscissa)] for structures 1100±1300 and 60±120� on

the y axis (ordinate), both OÐCÐC angles are usually �120�.
For structures 1±1100/1300±2299, the OÐCÐC angles differ

from 120� as the CÐOÐCÐC angle tends towards 0/180�.
The majority of para-anisole derivatives have a CÐOÐCÐC

angle close to planarity (< 15� or > 165�), with a signi®cant

difference in their OÐCÐC angles that can be attributed to

steric and electronic effects. Two related examples have been

reported by Wiedenfeld et al. (2003).

There are three CÐH� � �O Cester intramolecular contacts

present, involving atoms C9, C10 and C16 [with C� � �O
distances shorter than 3.050 (2) AÊ and CÐH� � �O angles

larger than 115�; Table 2]. A direction-speci®c C15Ð

H15� � �O1i contact about inversion centres generates a weakly

bonded dimer [C15� � �O15i = 3.4812 (19) AÊ ; symmetry code:

(i)ÿx, 1 ÿ y, 1 ÿ z]. These dimeric units stack through aryl �±

� stacking interactions. The mean planes of the indole units in

these �±� stacks lie within 3.54 AÊ of one another, and the

separations of the aromatic ring centroids are 3.6843 (9) and

3.6846 (9) AÊ for Cg1� � �Cg1ii and Cg1� � �Cg2ii, respectively

[symmetry code: (ii) 1 ÿ x, 1 ÿ y, 1 ÿ z; Cg1 and Cg2 are the

centroids of the ®ve- and six-membered rings; Fig. 3]. These

interactions are 0.2 AÊ longer than, although similar in nature

to, the �±� stacking in graphite, where the interplanar spacing

is 3.35 AÊ (Wells, 1984). Examination of the structure with

PLATON (Spek, 2003) showed that there were no solvent-

accessible voids in the crystal lattice.

Experimental

tert-Butyl (4-methoxy-2-vinylphenyl)carbamate (0.4 g, 1.6 mmol) and

tetramethylethylenediamine (0.48 ml, 3.2 mmol) were dissolved in

dry diethyl ether (25 ml) and cooled to 195 K under N2. n-BuLi

(3.3 ml, 1.87 M in pentane, 6.4 mmol) was added dropwise, via a

Figure 2
A graph of OMeÐCÐC-angle differences plotted against their corre-
sponding CÐOÐCÐC torsion angle for 2299 [±C6H4±O±CH3] structures
(x axis) (CSD; Version 5.24 of July 2003; Allen, 2002). The intersect of the
OÐCÐC lines (�120�) correlates well with the CÐOÐCÐC angles
(triangles) between 60 and 120� (y axis).

Figure 3
A view of the overlay of the alternating indole rings in the �±� stacking
arrangement.



syringe, over a period of 30 min. The temperature was raised to 248 K

and the mixture was stirred for 2 h, during which time an orange±red

colour developed. The solution was cooled to 195 K, anhydrous di-

methylformamide (1.5 ml, 20 mmol) was added and the solution was

warmed to room temperature. The diethyl ether was evaporated and

replaced by tetrahydrofuran (THF, 25 ml), and the mixture was

stirred at room temperature under N2 for 5 h. The THF was then

evaporated, and the residue was extracted with diethyl ether

(2 � 30 ml) and dried over sodium sulfate. The solvent was evapo-

rated to give a dark-yellow oil. Flash chromatography, eluting with

hexane/diethyl ether (9:1), gave the product as a white solid (yield

0.40 g, 80%; m.p. 327±328 K). Colourless crystals were obtained by

slow evaporation of an ethanol solution. IR (cmÿ1): �C O 1721

(KBr); 1H NMR (300 MHz, d6-DMSO): � 0.88 (t, J = 7 Hz, 3H), 1.24±

1.37 (m, 4H), 1.61 (s, 9H), 1.62±1.68 (m, 2H), 2.62 (t, J = 7.3 Hz, 2H),

3.80 (s, 3H), 6.93 (dd, J = 2.5, 8.9 Hz, 1H), 7.06 (d, J = 2.5 Hz, 1H),

7.38 (s, 1H), 7.90 (d, J = 8.9 Hz, 1H); 13C NMR (75 MHz, CDCl3): �
14.2, 22.7, 25.1, 28.5, 29.0, 32.0 56.0, 83.2, 102.3, 112.6, 116.1, 125.3,

130.1, 133.2, 150.1, 155.9; EI±MS: m/z 317.3. HRMS: (M+H)+

318.2080 found; C19H27NO3 requires 318.2069. Analysis calculated

for C19H27NO3: C 71.89, H 8.57, N 4.41%; found: C 71.94, H 8.60,

N 4.33%.

Crystal data

C19H27NO3

Mr = 317.42
Triclinic, P1
a = 8.9414 (6) AÊ

b = 8.9955 (6) AÊ

c = 11.7433 (6) AÊ

� = 105.001 (4)�

� = 93.265 (6)�


 = 98.902 (6)�

V = 896.69 (10) AÊ 3

Z = 2

Dx = 1.176 Mg mÿ3

Mo K� radiation
Cell parameters from 63

re¯ections
� = 5.5±21.5�

� = 0.08 mmÿ1

T = 294 (1) K
Block, colourless
0.52 � 0.20 � 0.15 mm

Data collection

Bruker P4 diffractometer
! scans
4895 measured re¯ections
4071 independent re¯ections
3004 re¯ections with I > 2�(I )
Rint = 0.044
�max = 27.5�

h = ÿ11! 1
k = ÿ11! 11
l = ÿ15! 15
4 standard re¯ections

every 296 re¯ections
intensity decay: 1%

Re®nement

Re®nement on F 2

R[F 2 > 2�(F 2)] = 0.048
wR(F 2) = 0.133
S = 1.03
4071 re¯ections
213 parameters
H-atom parameters constrained

w = 1/[�2(F 2
o) + (0.0687P)2

+ 0.12P]
where P = (F 2

o + 2F 2
c )/3

(�/�)max = 0.001
��max = 0.38 e AÊ ÿ3

��min = ÿ0.19 e AÊ ÿ3

Compound (I) crystallized in the triclinic system; space group P1

was assumed and con®rmed by the analysis. All H atoms were treated

as riding atoms using SHELXL97 defaults (for 294 K), the CÐH

distances ranging from 0.93 to 0.98 AÊ . The three largest peaks in the

®nal difference map are in the vicinity of atom C11.

Data collection: XSCANS (Bruker, 1994); cell re®nement:

XSCANS; data reduction: XSCANS; program(s) used to solve

structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne

structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

PLATON (Spek, 2003); software used to prepare material for

publication: SHELXL97 and PREP8 (Ferguson, 1998).

JFG thanks Dublin City University for the purchase of a

diffractometer and computer system. DOS and CC thank

Enterprise Ireland for grants in aid of research.

Supplementary data for this paper are available from the IUCr electronic
archives (Reference: GD1287). Services for accessing these data are
described at the back of the journal.
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Table 1
Selected geometric parameters (AÊ , �).

O1ÐC6 1.2029 (17)
O2ÐC6 1.3365 (18)
O2ÐC7 1.4838 (16)
O3ÐC14 1.3846 (18)
O3ÐC31 1.410 (2)
N1ÐC6 1.3829 (17)

N1ÐC11 1.4076 (18)
N1ÐC1A 1.4022 (16)
C1ÐC2A 1.5001 (18)
C1AÐC2A 1.3481 (19)
C11ÐC12 1.4090 (18)
C12ÐC2A 1.4496 (19)

C6ÐO2ÐC7 120.16 (11)
C14ÐO3ÐC31 116.97 (13)
C6ÐN1ÐC1A 127.03 (12)
C6ÐN1ÐC11 125.12 (11)
C1AÐN1ÐC11 107.83 (11)
O1ÐC6ÐO2 126.73 (13)
O1ÐC6ÐN1 123.03 (14)
O2ÐC6ÐN1 110.24 (12)
N1ÐC11ÐC12 106.87 (11)

N1ÐC11ÐC16 131.59 (12)
C11ÐC12ÐC2A 107.87 (12)
C13ÐC12ÐC2A 132.65 (12)
O3ÐC14ÐC13 115.60 (13)
O3ÐC14ÐC15 123.34 (13)
C2AÐC1AÐN1 110.69 (12)
C1AÐC2AÐC12 106.73 (11)
C1AÐC2AÐC1 128.14 (13)
C12ÐC2AÐC1 125.11 (12)

C7ÐO2ÐC6ÐO1 ÿ0.3 (2)
C31ÐO3ÐC14ÐC15 10.4 (2)

C11ÐN1ÐC6ÐO1 2.7 (2)
C2ÐC1ÐC2AÐC1A 5.0 (2)

Table 2
Hydrogen-bonding geometry (AÊ , �).

DÐH� � �A DÐH H� � �A D� � �A DÐH� � �A

C9ÐH9C� � �O1 0.96 2.36 2.944 (2) 119
C10ÐH10A� � �O1 0.96 2.46 3.033 (2) 118
C16ÐH16� � �O1 0.93 2.42 2.9356 (19) 115


